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differential operators 
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Department of Applied Mathematics, University of Hull, Hull, UK 

Received I December 1992 

Abstract. The theory of value distribution is applied, through a study of boundary value 
distribution for the Weyl-Titchmanh m-function, to the spectral analysis of differential 
operators on the half-line. Particular consequences are the theoretical underpinning of a 
numerical approach to spectral analysis of differential operaton exhibiting absolutely 
continuous or singular spectra, and new identities for the spectral measure in terms of 
solutions of the associated differential equation. 

1. Introduction 

This paper is a sequel to [ 11, in which the theory of value distribution was developed 
for the class of functions defined by boundary values of Herglotz functions. Recall 
that the value distribution of a real-valued function F(A)  is measured by such quantities 
as lF- ' (S) /  and IF-'(S)nAI, where 1 . 1  denotes Lebesgue measure, S and A are Bore1 
subsets of R, and where by F - ' ( S )  we mean 

F-'(S)={AER;F(I)ES}. 

The aim of the present paper is to apply the ideas and methods of [l] to the spectral 
analysis of differential operators T =  -(dz/dxz)+ V(x) in Lz(O, oo), where V(.) is 
locally integrable and real valued, but is otherwise unrestricted in its behaviour for 
large x. 

The self-adjoint operator T,, where a parametrizes the boundary condition at x = 0, 
may have discrete, absolutely continuous, or singular continuous spectrum, or a 
combination of all three. A basic tool of spectral analysis for such differential operators 
is a study of the boundary behaviour near the real axis of the Weyl-Titchmarsh 
m-function m,(z). The m-function is analytic with positive imaginary part in the upper 
half plane, and its boundary values are defined Lebesgue almost everywhere for I E R  
by m:(A) = lim,,o+ m,(A +ia). We are concerned with value distribution for the func- 
tion m:(A), and its relation to spectral properties of the associated measure pm. The 
behaviour of m:(A) as a function of A may be very wild indeed. For example, in the 
presence of singular continuous spectrum m : ( I )  may assume every real value in every 
subinterval of R. Nevertheless, the value distribution for m:(A) may be quite regular, 
and is a key to an understanding of the spectral properties of p-. 

Two by-products of this work may be mentioned, each of which has implications 
for the spectral analysis of differential operators. The first is the theoretical framework 
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for a method of numerical spectral analysis which is su5ciently general to cover 
absolutely continuous or singular continuous spectrum. The idea behind this method 
may be simply stated. It is to solve numerically the associated (real) differential 
equation, starting at x = N with prescribed ‘initial’ conditions, and to determine f’/ f 
at x = 0, for a sampled range of A values. The large N distribution of computed values 
of f’/f is then directly related to spectral behaviour of the differential operator. In 
particular, if the spectrum is absolutely continuous, local sampling techniques permit 
the numerical determination of &(A), despite the fact that this function is complex- 
valued, and the numerical problems presented by the solution of the differential 
equation in the complex domain are avoided. 

The second by-product of the results of this paper is the derivation of explicit 
formulae (equation (24) of section 4) for the spectral measure pe as the limit of a 
sequence of absolutely continuous measures, each of which depends in a simple way 
on the solution at a single point x = N of the real h differential equation. Recalling 
that no special conditions have been placed on the large x behaviour of the potential 
function V(x), these formulae are new, in the degree of generality presented here. 

The organization of the paper is as follows. In section 2, we introduce the family 
of differential operators {TJ with their associated m-functions and measures p... Most 
of section 3 is based on theorem 1 and its corollary, which establish the basic formulae 
(equations (12) and (15)) for value distribution of m:(A). Through this theorem, a 
link is forged between the family of spectral measures { pJ and a Cauchy distribution 
function w ( r ,  S )  which controls local value distribution. Theorem 1 is next applied to 
the Weyl-Titchmarsh m-functions over afinite interval in order to relate local spectral 
properties to sampled value distribution for f ‘If at x = 0. 

Finally, in section 4, asymptotic value distribution for f ’if at large N is discussed, 
leading in theorem 2 to the characterization of p= as a weak limit of absolutely 
continuous measures. 

2. Spectral analysis and the Weyl-Titchmarsh m-function 

We considerthe family ofdifferentialoperators { Tm}, -VIZ< a < ~ / 2 ,  actingin Lz(R+),  
where T, is defined by 

d2 
dxZ 

T, =--+ V(X) 

subject to the boundary condition 

(cos a)f(O)+ (sin a)f’(O) = 0 (1) 
and V( .) is a real-valued function such that V E  L,(O, N ) ,  for any N > 0. 

The operator T, is defined in the first instance on the set of infinitely differentiable 
functions having compact support in [O, CO), and for which the boundary condition 
(1) is satisfied. (By derivatives at x=O we mean right derivatives.) Assuming the 
limit-point case ([2], [3]) at infinity, T, is essentially self-adjoint on this set of functions, 
and therefore extends to a self-adjoint operator in Lz(W+). 

Associated with the differential expression -(d2/dx2) + V(x) is the corresponding 
Sturm-Liouville differential equation 

(O<x<m,Imz>O) (2) 
d2 

dxZ - - f ( x ,  z)+ V(X)f(X, 2) = zf(x, z )  
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with its real counterpart 

We denote by U,( ., z),  U-( ., z )  respectively the solutions of equation (2) (with 

u,(O, z )  = -sin a 

u&(O, 2) =cos CY. 

corresponding solutions U,( . , A ) ,  U*(., A )  of (Z’)), subject to the conditions 

U, ( 0 , z )  = cos a 

uh(0, z )  =sin a 
(3 )  

The Wronskian of any two solutions of equation (2), for the same value of z, is 
independent of x, so that we have then 

W(U,, U,) = U&& - U&& = 1. 

For fixed x Z 0 ,  u, (x ,z )  and u.(x,z) are analytic functions of 2, having U,(& A )  
and U,(% A )  as their values on the real z axis. 

The Weyl-Titchmarsh m-function “(2) is defined for Im z> 0 by the condition 
that u.( ., z )  + m,(z)u,( ., z )  E Lz(O, 00). (See [ 3 ] - [ 6 ] . )  

Then m,(z) is analytic in the upper half-plane, with Im m,(z )  > 0. The dependence 
of m, on CY is rather simple. I f f ( .  , z) is any (non-trivial) L2 solution of equation (2), 
then 

f ’ ( 0 , z )  u&(O,z)+m,(z)u&(O,z)  - s ina+m,(z)cosn  
f ( 0 , z )  u,(O,z)+m,(z)u,(O, z) cosa-m,(z)s ina 

- -- - 

so that 

cos af’(0,  z )  -sin a f ( 0 ,  z) 
sin a f ’ (0 ,  z )  + cos a f ( 0 ,  z )  ’ 

ma(.)= . 

Substitutingf’(0, z)/f(O, z )  = mo(z),  we have 

(4) 
mo( z) cos a -sin a 
mo( z) sin a +cos a ’ m J z )  = 

I t  is known, from asymptotic estimates of the solution of the differential equation 

Hence equation (4) implies that Iim%+- “(is) =cot CY for 01 # 0. 
Further estimates lead to the conclusion that 

([6]), that lim,,,]m,(is)l=oo. 

<CO for any a # 0. 

The Herglotz representation theorem then allows us to write 

whereas for 01 = 0 we have the modified representation 

mo(z) = c, + jm (L-L) dp(t)  
-m T - 2  r2+1 

with c, = Im mo(i) a real constant. 
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In equations (5) and ( 5 7 ,  the ‘spectral function’ pa is uniquely defined, up to an 
additive constant, and is non-decreasing and right continuous. The importance of pa 
for spectral analysis lies in the fact that the differential operator T, is unitarily equivalent 
to the multiplication operator (f(t)+ f f ( r ) )  in the space L2(W, dp,). The spectral 
properties of T, are determined, through the measure p .  =dp,, by the boundary 
behaviour of “(2) as z approaches the real axis. (See, for example, [3].) 

The differential operator T, may in some sense be regarded as a limit, as N+W, 
of the corresponding operator in the space L2(0, N ) .  (Indeed, this limiting process 
may be made precise using the notion of strong resolvent convergence.) It is with this 
in mind that we introduce m-functions for a finite interval 0 S x S N. 

To do so, we need to use boundary conditions at x = N. For Im z.> 0, define m z s ( z )  
by the condition that U, (. , z )  + m$( z)u, (,  , z )  satisfy 

(cosp)f(N)+(sin p)f‘(N)=O. (6) 

Hence, for example, m&(z)  =f’(O,  z ) / f ( O ,  z )  for the solution f( ., z )  of equation (2), 
subject to 

f( N, z )  = -sin p f ’ (N ,  z) =cos 0 

and the analogous result to (4) becomes 

We can also exhibit the dependence of m z s ( z )  on p. Using W(u,,  0.) = 1 at x = N, 
the above solution f(. , z) of equation (2) may be written as 

f(x, z) = ( ua( N, z )  cos p + uh( N, z) sin p)u,(x, z )  

-(U, (N, I) cos p + U:( N, z )  sin p ) U,, (x, z) .  

Substituting m&(z)  =f’(O, z)/f(O, z )  into (7), and using the conditions (3) for 
U,, U, and derivatives at x = 0, we have 

u,(N,  z) cos p + u&(N, z) sin p 
u,(N, z )  cos p + U&( N, z )  sin p 

N me&) = - (7‘) 

From the differential equation (2) satisfied by u,(x,z) and u * ( x , f ) ,  we have the 
elementary identity 

d - w ( u , ( x , z ) , u , ( x , i ) ) = 2 i ~ m z ~ ~ , ( x , z ) ~ ~  
dx 

which on integration wrt x from 0 to N gives 
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Hence uh(N, z ) / & ( N ,  z), and similarly u&(N,  z ) /u , (N,  z), both have negative 
imaginary part in (7’). From the analytic properties, as a function of 2, or U, and U,, 
it follows that m S ( z )  is analytic in the upper half plane. Integrating the Wronskian 
identity for the functions 

u , ( x , z ) + m : ~ ( z ) u , ( x , z )  and U&, T ) + m : p ( i ) u A x ,  3 
shows that Im m y  ( z )  > 0; for each boundary condition at x = N, parametrized by p, 
we may regard mlr,p as an equivalent m-function, over a finite interval, to the function 
”(2) for the infinite interval. Indeed, it is an important consequence of the Weyl 
limit point/limit circle theory ([2], [3]) that m$(z) converges to “(2) in the limit 
as N -f m, and does so uniformly both in p and in compact subsets of the upper half 
plane C+ .  

“,B 

As in (5) and (S), we have the Herglotz representations 

and we denote by p20 the measures dpz’. The differential operator T c p =  
-(dZ/dxZ)+ V ( x ) ,  acting in L2(0, N )  with boundary conditions, parametrized by n 
and p, at x = 0 and at x = N respectively, is unitarily equivalent to the multiplication 
operator in L2(R, dp:,). 

The decomposition of the measure p. into its singular and absolutely continuous 
parts, pa = pLh+pz, and of pI, into its discrete and singular continuous parts pz, p&’, 
is determined by the boundary behaviour of “(2) as z approaches the real axis. We 
recall, from [I], 

pF= p L D , { A ~ R :  Im “ ( A  + i s )  is bounded in O i  E <  1) 

p: = pa, A E R: lim - iam,(A +io) = &{A) # 0 . { r+o* I 
We shall denote by m:(A) the boundary value of “(2) for each A s W  for which 

this limit exists (finitely); i.e. 

m:(h) = lim m,(A +ia). (10) 
=+Of 

Then m:(A) is defined for (Lebesgue) almost all A E R ,  and l/?r Im m:(A) is the density 
function for pz. Note from equation (4) that GI,, for a # 0, is supported on the set 
of A E R  for which m,+(h) exists with m,+(A) =-cot a. On the other hand, a set of A E iw 
for which ml(A) exists as a real limit will have zero po measure, and zero pm measure 
unless there are points in the set for which m,f(A) = -cot a. 

A similar analysis applies to the boundary values of m$(z). Moreover, T z o ,  being 
a Sturm-Liouville operator over a finite interval with regular endpoints, has purely 
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discrete spectrum. It follows that each of the spectral measures @ED is purely discrete, 
and that m g D ( z )  is meromorphic as a function of z in the entire complex plane. Where 
no confusion can arise, wc shall denote simply by m t 6 ( A )  the restriction of m c o ( z )  
to z = A on the real axis such that A is not a discrete point of @go. Thus, for almost 
all A E W ,  mZ6(A) is the real boundary value of mg6(z) as z approaches A from the 
upper (or lower) half-plane. 

There is, of course, a close connection between spectral properties of T, and 
behaviour for large x of solutions of the differential equations (2) and (2'). For example, 
the discrete points of fiC consist of those h E W for which Iu,(x, A)I2 dx <W. Another 
such link is provided by the notion of subordinacy ([7]-[9]). Thus, mT(A) will 
exist as a real limit if and only if a value of LY f O  exists for which the solution 
U*( ', A)  is subordinate, in which case ?&(A) = -cot a. It follows that the singular 
part of @= is concentrated on those AER for which U,( ., A )  is subordinate. Here the 
solution v , ( . , A )  of epa t ion  (2') is said to be subordinate whenever 
IimN+-l: /v-(n, A)/'dx/JO I f ( &  A)/*dx=O for any solution f ( . , A )  of (2') which is 
not a constant multiple of ea( ., A).  One of the main results of this paper will be to 
establish a formula (equation (24)) for the spectral measure pm as a limiting integral 
in terms of the solution U,( ., A )  and its derivative, U:( ., A). We shall obtain this result 
as an application of the theory of value distribution ([l]) for boundary values of 
Herglotz functions. To apply the ideas and methods of [l], we shall consider first the 
boundary value distribution of the m-function mo(z )  and its analogue m&(z) for a 
finite interval, and secondly (in section 4) of the Herglotz function -ub(N, A ) / v @ ( N ,  A )  
in the limit N +  00. It will be seen that value distribution is a key notion in the spectral 
analysis for differential operators, and in addition provides a practical tool for the 
investigation of spectral behaviour. Rather than use the results of [ 11 directly, we shall 
adapt the treatment to the current context in which the key role is played by the spectral 
measures and For further details, consult [l]. N 

3. Boundary value distribution for m.(z) and m:,#(z) 

For z E e,, define a corresponding Cauchy measure . I j  by 

where A c_ W is an arbitrary Borel set. For any Borel subset S of W, define 

4, S )  = lim ISlm,(~+i,,. (11)  

Then no(A, S )  may be interpreted geometrically as the limiting value, as z approaches 
A from the upper half plane, of the angle subtended at the point mo(z) by the subset 
S of the real axis. As in [l], one may use subsequent results to verify that, for almost 
all A having a r e d  boundary value for mo(z),  

--0+ 

for ?&(A) E S 
form:(A)eS. 

w(A,  S )  = 

For such A, w(A, S )  may thus be identified almost everywhere with the characteristic 
function of ( m i ) - ' ( S ) .  

The following theorem exhibits the relationship between o(A, S )  and the family of 
spectral measures pa. As in [ 11, our results are a development of the ideas and methods 
of [ 101. 
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Theorem I .  Let A, S be arbitrary Borel subsets of W. Then 

I ~ ( l + ~ ~ ) - ' r _ , , - , ~ ( A ) d y =  

PFOO~: Consider first the case A = (a ,  b ) ,  S = (c, a), for a, b E R and e > 0. Equation 
(12) becomes in that case 

ICm (I+y2)- 'r- , , - ly(a,  b )  dy = ~ ( t ,  (c, m)) dt. jab (12') 

Define the Herglotz function G ( z )  (Im z>  0) by 

giving 

where we are defining the log function by 

Note Os Im G ( z )  S n for Im z>  0. Hence G ( z )  has a Herglotz representation of type 
(5'), for which the corresponding measure q is absolutely continuous, with density 
function given by 

log( r efR) =log r +  io for r>O and O < @ < n .  

m,(A + is) - c 

0-o+ T 

It is easily verified that f ( h )  = w(A,  (e, 00)). Hence, with S = (c, m), the RHS of equation 
(12') is just v{(a, b ) } .  We also have 

q { ( a , b ) ) =  lim - ImG(A+ie)dh  
e-O+ 57 lab 

which on using equation (13) together with equations (4) and ( 5 )  in the case CY = -cot-' y 
leads to 

Noting that 

is bounded uniformly in a, by equation (4), it may be verified that the contribution 
to q{(a, b) }  coming from the f integration over the region W\((a - S, a + 6)) is of order 
E in the limit E -to", for any fixed S BO. Hence the f integral in (14) is effectively over 
a finite closed interval containing (a, b ) .  The triple integral is then absolutely convergent. 
Taking first the A integral and then using the Lebesgue dominated convergence theorem 
to evaluate the E limit, we obtain the LHS of (1.2'). Hence equation (12) is proved in 
the case A = (a ,  b ) ,  S = (e, m). A similar proof applies if we replace the semi-inEnite 
interval (c, m) by (-00, - c ) ,  and using countable additivity the theorem follows for 
general Borel sets A and S. 

Corollary 1 .  For any Borel set A, let 
Ao= A n { h  E W: h E dom(m:) and Im mof(A) = O}. 
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Then, for Borel subsets A, S of R, 

I (mT)- ' (S)nAl= ( l + y 2 ) - ' p - , , - ~ , ( A o )  dy. (15) 

This corollary implies the remarkable result that the density function for the value 
distribution of m:(A), where m i  is real, over a set A, is a simple function of the 
spectral measures pm for the one-parameter family T, of self-adjoint realizations of 
the differential operator -(d2/dx2)+ V(x). 

Theorem 1 and its corollary apply also to the functions m 2 p ( z ) .  Indeed, m c p ( z )  
has a real bourrdary value as z+  A, for almost all A ER.  With m, replaced by m& in 
equation (13'), the density function f:(A) may be identified almost everywhere with 
the characteristic function of ( m $ - ' ( S ) ,  and we have 

Corollary 2 For arbitrary Borel subsets A, S of R, 

Is 

Equations (12) and (16) together imply the existence of an asymptotic value distribution 
for m&(A), in the limit as N-tm. This result may be summarized in the following 
corollary. 

Corollary 3. For arbitrary Borel subsets A, S of R, 

lim I(m,"p)- ' (S)nAl= 
N - a  (17) 

boo$ We consider first the case in which A is a h i t e  open interval, A = (a, b). The 
Weyl limit point/limit circle theory implies that m&(i) lies on a circle C y  in the 
upper half plane, such that for N ' >  N the circle Cy lies in the interior of the circle 
Cp. Hence, we have bounds /m$(i)l  <const and Im m&( i )  2 const > 0, uniformly in 
N for N 3 1, say, and for /3 in the range -7 i j2  < /3 S 7r/2. Using these bounds in the 
numerator and denominator of (7), they can be extended to apply also to m r p ( i ) ,  
giving in particular Imgp(i)l s const, uniformly in a, p, and in N for N 2  1. 

From the imaginary parts of equations (9) and (9'), this gives 

from which it follows, for fixed a, b, that &{(a, b)}=Zconst. 
We also have limN,, &{(a, b)}  = p,{(a, b)}, provided a, b are not discrete points 

of pm. However, A can be a discrete point of pa only if m:(A) = -cot a. This can 
happen at A =a,  or at A = b only for at most two values of -mt a. With A = (a ,  b ) ,  
the Lebesgue dominated-convergence theorem now gives 
lim I(mo"jp)-'(S)nAl 
N-ia 

(l+y2)-'p-mi-lv(A)dy= = I ,  
from equation (12). 
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The result may be extended to general Bore1 sets A, on noting that I (m$) - ’ (S )n  
AI L IAl and o( t, S) C 1, and using countable additivity for Lebesgue measure. 

Corollary 3 provides a theoretical justification for the numerical approach to spectral 
analysis which was sketched in the introduction. Let A. be any value of the spectral 
parameter A at which the limit m i ( A )  exists, as in equation (10). (This limit exists in 
any case for (Lebesgue) almost all values of A.) Take a small interval (Ao-&,  Ao+S) 
containing Ao. For A in this interval, solve the differential equation -(d’f/dx2) + Vf= Af 
from x = N to x = 0, starting at x = N with the ‘initial’ conditions 

f( N, A )  = -sin p f’( N, A) = cos p 

where ,3 is arbitrary but fixed, in the range -7r/2 < p C c/2. At x =0, evaluate 
f’(0, A ) / f ( O ,  A )  to give m$(A). The distribution of the values of this ratio, for A E 

( A. - 6, A. + S), in the limit as N + 00, will reflect the spectral properties ofthe differential 
operator To= -(d2/dx2)+ V in the neighbourhood of A = A o .  

In particular, we may adopt a sampling procedure in which A is chosen randomly, 
with uniform distribution in the interval (Ao-6,Ao+S). In that case, according to 
corollary 3, the limiting probability distribution for m&(A) for large N is given by 

lim prob{m:p(A)c S}=- w(t,S)dt. 
N+CO 

By theorem 3 and equation (20) of [l], the RHS of (18) converges to o ( A o ,  S) in the 
limit as 6 + Ot. Hence, if the interval containing A. is chosen to be small enough, the 
limiting probability in (18) will be close to o ( A o ,  S). 

Two possibilities arise, each illustrating a different mode of spectral behaviour near 
Ao. If mT(Ao) is real then w(Ao,  S) = 1 for any open interval S containing m:(Ao). The 
limiting probability distribution, for small 6, then approaches a point distribution. 
concentrated with probability 1 at ml(Ao). Numerically, this corresponds to finding 
f’(0, A)/f(O, A )  close to ml(Ao) with higherand higher frequency, the closer the sampled 
A values are taken to Ao. If this happens for almost all A. then we are dealing with a 
case of purely singular spectrum for To. 

Alternatively, it may happen that Im m:(Ao) # 0. Again we have, in this case, a 
limiting probability distribution close to w(Ao,  S), if 6 is small enough. However, 
according to equation ( l l ) ,  w(Ao ,  S) now defines a Cauchy probabilify disfn’bution, 
having density function 

- 1 Im m:(Ao) 
c (A-Re m:(Ao))’+(Im m~(Ao))’’ 

Here, if A is sampled close to Ao, the computed values off’(0, A)/f(O, A), rather than 
accumulating in the proximity of the fixed value m:(Ao) (which is now in any case 
complex), will have a spread described by a Cauchy distribution, of which the median 
is Re mz(Ao), and Im m:(Ao) is the half-width at half-maximum ofthe density function. 
Such a sampling technique will therefore permit the estimation of both real and 
imaginary parts, at Ao, of the boundary value of the complex m-function mo(z), from 
the observed distribution of sample values for f’(0, A)/f(O, A).  We are then dealing 
with absolutely continuous spectrum for To; in fact 1/7r Im mo+(Ao) is just the density 
function, at A,, of the absolutely continuous part of the measure po.  
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Thus the sampled value distribution of f'(0, A)/f(O, A )  near A = A ,  enables us to 
distinguish between various types of spectral behaviour. Points A. at which m:(A) is 
real belong to the support of the singular spectrum of p=, where m:(ho) = -cot 01. For 
points A. in the support of the singular spectrum of po, we have w(Ao, S )  = O  for all 
finite intervals S, in which case sampled values of If'(0, A)/f(O, A)[ become very large 
near Ao. Alternatively, we may describe those points at which m i ( A )  is real as giving 
rise to a subordinate solution I)*( ., Ao) of the differential equation, with Jro( ., A,) 
subordinate for A. in the spectral support of p i .  

It should even, in principle, be possible to use these sampling techniques to 
distinguish between singular continuous and dense discrete spectrum. In both cases, 
m:(A) will be real for almost all A. However, discrete points of p,, for some a # 0, 
coincide, by an adaptation of theorem 4 of 111, with points at which m:(A) is 
approximately differentiable. At such points ho, the sampled values of (m&(Ao+ h ) -  
m&(Ao- h ) ) / 2 h ,  if h is taken from a random uniform distribution over [0, SI, will 
accumulate for small positive S near the value of m&ap,,(An), the approximate derivative 
of mo at Ao; on the other hand, if there is no such discrete point for any non-zero a, 
this ratio will be predominantly large for h close to zero. Whether this phenomenon 
represents a realistic practical approach to characterizing these two kinds of singular 
spectrum is a question requiring further investigation. 

4. Spectral measures, and value distribution €or U;(&', A)/u,(N, A) 

Equation (8) shows that -u&(N, z) /v , (N,  z )  has positive imaginary part in the upper 
half plane, and is therefore a Herglotz function. We can therefore calculate a value 
distribution formula for oh(N,h)/u,(N,A), for A E R .  In analogy with the results of 
section 3, one might expect this ratio to have an asymptotic value distribution in the 
limit as N + w .  However, constructed examples V ( x )  of potential functions for which 
the spectrum has a singular continuous component show that, in general, 
&(N, A) /v , (N ,  A )  need not have an asymptotic value distribution in general. There 
are, however, important special cases in which there does exist such an asymptotic 
distribution. We shall exhibit some of these special cases as a consequence of the 
theory of value distribution for vh(N, A)/u,(N, A )  which we shall develop in this 
section. A further consequence will be the construction of general formulae for the 
spectral measure p- as a weak limit of a sequence of absolutely continuous measures, 
for each of which the density function will turn out to be a simple rational function 
of U, and U&. We begin with a lemma, which we state in sufficient generality to cover 
all intended applications. 

Lemma 1. Let S,A  be arbitrary Bore1 subsets of W, and for N>O define the set 
~ N ( S ,  A )  by 

YN(S,  A )  = { A E A ;  u & ( N , h ) / v , ( N , h ) ~ S } .  (19) 

Let I)(t)  be a continuous, positive valued function of I, and let z ( t )  be a continuous, 
complex valued function of I such that Im z( I )  > 0. Then 

(20) 
Im z ( t ) I ) ( t )  d t  

\ ~ , , s , A I  bXN, I) - z ( t ) u , ( N ,  t)lZ= IS dy \A I Y  - z(t)12 
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Proof. As for theorem 1, we proceed from special cases in the direction of increasing 
generality. Consider first of all the case z ( t ) =  i, $ ( t ) =  1, in which equation (20) 
becomes 

As in the proof of theorem 1, take the case S = (c, 00) and A = (a, b ) ,  with c > 0. We 
consider the Herglotz function K ( z ) ,  defined for Im z > O  by 

The integrand on the RHS of (21) may be written 

provided uh(N, z )  +iu,(N, z )  # 0, where we have used W(u,, u.) = 1. Carrying out the 
integration with respect to y now yields 

Using equation (3) to express U,, U, as linear combinations.of uo, uo, one may verify 
that the final expression on the RHS of (22) may be written, for a f 0, 

+cot a cot-’ c. 
The singularity, on the RHS of equation (22), at any value of z for which u & ( N ,  z )+  
iu,(N, z )  =0, is removable, since 

u&/u. = -i+(u.u, + u & u & )  cot-‘ c =  iW(u,, U,) cot-’ c = i  cot-’ c = log [(1::4. 

An alternative evaluation of K ( z )  may be carried out using the fact that the integrand 
on the RHS of (21), using equation (73, is just m~-c,,-~y(z)/(l + y 2 ) .  From the Herglotz 
representations (91: for mgo(z) ,  with the above rewriting of the final expression on the 
RHS of (ZZ), we have the identity 

with a modified right-hand side, to take account of equation (9’). In the case a =0, 
for which the term -cot a cot-’ e is also removed from the LHS. 
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Each side of equation (23), with appropriate modification in the case a = 0, is a 
Herglotz function. For (Y # 0, one may use known asymptotic behaviour of uo, uo and 
their derivatives in the limit s + 00 with z = is (in fact uo,  U,, U;, U; diverge in this limit, 
and U; diverges more rapidly, by a factor of order A) to show that each side decays 
to zero along the imaginary axis. 

It is also clear that the LHS of equation (23) has a finite boundary value, with 
z = A + i ~ ,  in the limit &-to+, except at values of A for which u & ( N , A ) / u , ( N , h ) = c  
Due to the analytic properties of ob(N, z)/u,(N, z), such values of A are necessarily 
isolated, and can give rise only to logarithmic singularities of K ( z )  on the real axis. 
Any discrete part of the Herglotz measure q for K ( z )  would lead to pole singularities, 
and a singular continuous measure cannot be concentrated on a set of isolated points. 
Hence q is purely absolutely continuous. Taking the limit as E + 0’ of T-’ Im K ( A  + ie), 
we find that the density function for q is given almost everywhere by ,y(A)/(  oh( N, A ) ) 2 +  
(u,(N, A))’,where,y is thecharacteristicfunctionofthe set { A E W ;  u&(N, A ) / u , ( N ,  A ) E  
(c,  00)). A similar analysis applies to the case a = 0. Taking the imaginary part of the 
RHS of equation (23), we may now proceed to evaluate v { (a ,  b ) }  as in equation (14) 
of the proof of theorem 1, except that here it is the second parameter p of p 2 p  which 
is integrated over, rather than a. This leads directly to equation (209, in the case 
S = (e, m), A = (a ,  b ) .  A similar argument gives equation (20’) with S = (-a, -c), again 
for A = (a,  b ) .  The extension of equation (20‘) to arbitrary Bore1 sets A and S is then 
straightforward. 

zo, $(f) = 1, where now z, is any fixed 
complex number in the upper half-plane, is carried out in a precisely similar manner, 
replacing ( l+y2)- ’  in the integrand of the definition (21) of K ( z )  by ly-z,1-’. The 
density function for the measure 7 then becomes x(A) / Io&(N,  A)-z,u,(N, A)12, and 
equation (20) folIows as before, including the case a = 0. 

We have now proved equation (20) in the case that the functions z ( t )  and + ( t )  
are constant over the set A. By linearity, we can also treat the situation in which z ( t )  
and +( t )  are step functions. The extension to continuous functions now follows standard 
arguments, and the lemma is now proved in full generality. 

As illustrations of the role of equation (20) in describing value distribution for 
uh(N, A) /u , (N ,  A )  and its behaviour in the large N limit, we consider two applications. 

For the first, take A = (a, b )  to be a finite interval, of which the endpoints are not 
discrete points of pe. Set $ ( t ) =  1 and S=W. In the limit N- tm,  p g o ( l )  converges 
to p a ( [ ) ,  again for intervals I of which the endpoints are not discrete points of pa. 
One can then justify taking the limit N -t m under the integral sign on the RHS of (20). 
Having done so, the y integration may be carried out explicitly, and we have the 
following characterization of the spectral measure pa as a weak limit of a sequence 
of absolutely continuous measures. 

Theorem 2. Let (a, b )  be an interval for which neither a nor b are discrete points of 
pa. Let z ( t )  be an arbitrary continuous, complex valued function of f, such that 
Im a ( t )  > 0. Then 

The proof of equation (20) in the case z ( t )  

In particular (with z(f) = i) we have 
d t  

p.{(a, b ) } =  lim - 
(uL(N, t ) )*+(u, (N,  t ) )”  (240 
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A more transparent statement of the relation between the measures p. and the 
asymptotic behaviour of the corresponding solution U, of the differential equation (2’) 
could hardly be envisaged! We also have 

Equation (24’) showsthat if (ub(N,  t ) )2+(u, (N,  t))’>const>O then pm will be purely 
absolutely continuous in the interval (a, b) (or, more generally, if ( v ; (N ,  r ) ) 2 +  
(u,(N, I))’> h ( t ) ,  where l / h  E L , ( 4  b). The following theorem determines the density 
function of fie and the asymptotic value distribution of u&(N, h ) /ue (N,  A )  in a wide 
variety of cases for which fie is absolutely continuous. 

Theorem 3. Suppose there exists a continuous complex valued function k( I), a S t s b, 
with Im k( t )>  0, such that the limit 

(26) R(A)= i?i_m_ Iuh(N, A) -k (h)u , (N ,  A ) /  

exists uniformly on (a, b), and is non-zero. Then: 
(i) The measure fie is absolutely continuous on (a, b), with density function 

1 Imk(A) _- 
71 (R(A))’ ’ 

lim I{A E A; ub(N A) /%(N,  A )  E SI1 = [ ISIW d t  

(ii) uh(N, A)/u*(N,  A )  has ao asymptotic value distribution, in the sense that 

(27) 
A N-m 

for Bore1 sets A, S with A c ($ b). 

Prooj Conclusion (i) of the theorem follows immediately from equation (24), applied 
to subintervals of (a, b) with z(t) = k(t). 

To prove (ii) of the theorem, set + ( t ) = l u k ( N ,  t ) -  k(t)u,(N, r)12/Im k(t) and 
z ( t )  = k ( t )  in equation (20). According to definition (19) of the set .YN(S, A), the LHS 
of (20) may then be identified with the Lebesgue measure of the set considered in (19). 
On the RHS of (ZO), we have, then, 

where, without loss of generality, we take A to be a subinterval of (a, b). 
In the limit as N+m it is straightforward to show that Iu;(N, t)-k(t)u,(N, I)/’ 

may be replaced by its uniform limit (R(t))’. Since R( t )  is continuous we may proceed 
to the limit N + m to obtain 

However, (i) of the theorem implies 

1 Im k ( t )  
dp,( t) =- - 

T (R(t))’ dt  
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from which (ii) of the theorem follows, remembering that ISIk(,, is the Cauchy measure 
of S, given by 

Remarks 

Observe the close similarity between equation (27) of theorem 2 and the corresponding 
equation (17) giving asymptotic value distribution for m&(A), where also w ( f ,  S) 
defines a Cauchy (or point) distribution for almost all f. The correspondence between 
the two equations becomes even closer if we regard k ( h )  in equation (26)  as the 
analogue of mi(A) .  

Theorem 3 applies, with k(A)=iv%, to any potential function V ( x )  such that 
V E  L,(O, oo),where[a, b] isasubintervalof(0, m),as wellastoCoulomb-likepotentials 
such as V ( x )  = const/(l + x) and to a variety of other long range potentials. Since the 
proof of theorem 3 requires only that the limit in equation (26 )  exist for a subsequence 
{ N j }  such that lim,*m Nj =a, the theorem may also be applied to the case of periodic 
potentials and their perturbations, where the sequence { N j }  is related to the periodicity 
7 of the potential, by taking Nj+,  - Nj = T. 

Results similar to (ii) of theorem 3 have been obtained for a general class of 
Sturm-Liouville differential operators by Atkinson [ll],  and have been extended by 
Clark to Hamiltonian systems, in [12]. 
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